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Abstract
We apply the optimized effective potential (OEP) implementation of density functional theory
(DFT) to the model system of interacting spinless electrons on a quantum ring. The ring
encircles a magnetic flux that induces a persistent current. In a perfect rotationally invariant
system the current does not depend on the electron–electron interaction (the latter is
characterized by a standard dimensionless parameter rS) and hence is not sensitive to the
microscopic structure of the electron correlated state. This changes, however, if a
symmetry-breaking external potential is introduced or, in a realistic system, due to the crystal
lattice potential (Hamer et al 1987 J. Phys. A: Math. Gen. 20 5677–93). In our model, we
calculate the persistent current as a function of rS in the presence of a weak Gaussian-shaped
‘impurity’ potential. We find that while below a threshold value rS < r c

S ≈ 2.05 the current is
independent of rS, it decays exponentially for rS > r c

S. This signals the formation of an electron
Wigner crystal pinned by the impurity potential. The electron density, homogeneous below r c

S,
indeed shows a periodic modulation at rS > r c

S. The modulation amplitude follows a
(rS − r c

S)
1/2 behaviour which is characteristic for a second-order phase transition, as expected in

the mean-field-type DFT-OEP approach. Our calculation shows that the macroscopic current,
which is a quantity directly accessible in DFT, can serve as an indicator of the formation of a
correlated electron state.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Density functional theory (DFT) [1, 2] provides a basis for
the vast majority of contemporary ab initio studies of many-
particle quantum systems [3]. A decisive advantage of DFT
which underlies its exceptional computational performance
is that it casts the quantum many-body problem in terms
of simple collective variables such as the particle density,
the spin density (spin-density functional theory, SDFT) and
the current density (current-density functional theory, CDFT).
Originally introduced as a ground state theory [1, 2], DFT has
been extended to time-dependent problems [4] and used for a
description of the many-body response in linear [5] and non-
linear [6, 7] regimes.

Although formally exact, DFT, when dealing with realistic
systems, must rely on approximate exchange–correlation
(xc) functionals Exc[n] that express the exchange–correlation
energy of a system through the collective variables in use,
e.g. the particle number density n(�r). Many approximations
for Exc[n] have been developed, the most popular being the
local density approximation (LDA) where the local functional
Exc[n] is adopted. The accuracy of various approximations
is very difficult to control. In special cases (e.g. the exactly
solvable Hubbard-type model [8], the helium atom or two-
electron ions which also allow an essentially exact solution [9])
the exact exchange–correlation potential vxc can be constructed
and compared with the approximate one. In this way the
essential features of vxc such as its discontinuity as a function
of the particle number [8] and the large-distance asymptotic
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behaviour [9] can be verified. Although the output of a
static DFT is, strictly speaking, limited to the particle density
in the ground state n0(�r) and the total ground state energy
E0 = E[n0(�r)], its realm is often stretched beyond the
validity limits. For example, the fictitious DFT–LDA band
structures, which are the eigenvalue spectra of the auxiliary
one-particle Kohn–Sham equations [2], typically provide an
insight into a real excitation spectrum. This makes the one-
particle LDA energy spectrum a useful starting point for
the many-body calculations. Of course, the ability of an
approximate xc functional to correctly reproduce the ground
state is a prerequisite for these DFT extensions.

An interesting situation, also driving DFT to its limits,
is the formation of a Wigner crystal [10] at low electron
densities. Within DFT, this problem has been addressed for
the two-dimensional electron gas [11] and for one-dimensional
quantum wires [12]. The periodic density modulation was
imposed by hand and the ground state energy was evaluated
with the Fermi-liquid exchange–correlation functionals and
the Thomas–Fermi–Weizsäcker approximation for the kinetic
energy term. In two dimensions, the Wigner transition was
found [11] at a critical value of r c

S between 31 and 35, in
good agreement with the value of r c

S = 37 ± 5 from quantum
Monte Carlo simulations [13]. In the one-dimensional wire the
transition was estimated at r c

S ≈ 5.5 [12], although the precise
value was dependent on the details of the lateral confinement.
Of course, a detailed description of the correlated state requires
a knowledge of the correlation function. The latter is, however,
beyond DFT formalism, where one has to rely on the less
informative density distribution. The particle density can,
indeed, reflect the Wigner crystal formation if the translational
symmetry has been broken to prevent the crystal ‘gliding’. Yet
the density distribution alone does not allow us to distinguish
the localized state from a delocalized one.

In this paper we pursue the idea of detecting the Wigner
crystal by calculating the persistent current. We explore the
simplest one-dimensional situation with electrons confined on
a quantum ring which is threaded by a magnetic flux. To break
the rotational invariance we introduce a very weak ‘impurity’
potential. Clearly, the vanishing localized potential does not
affect tunnelling of individual electrons, but should suppress
the current of the whole bundle of electrons building the
Wigner crystal. In a realistic system, the symmetry breaking
due to the crystal lattice potential also leads to an interaction
dependence of the current [14]. Calculating the current as
a function of rS, we are able to identify the crystallization
transition. At this point we want to make it clear that the choice
of the ring geometry is dictated by calculational convenience.
It is not the goal of this paper to address specific properties of
correlated one-dimensional fermions (see below).

In the linear response regime the persistent current
criterion is equivalent to the ground state curvature criterion
(the second derivative of the ground state energy with respect
to magnetic flux). The latter has been studied numerically for
interacting one-dimensional fermions on a lattice [15], where
multiple insulating phases due to umklapp-scattering driven
instabilities were found. The occurrence of such phases in
our case seems unlikely since our system is quasi-continuous

(although artificially discretized due to the real space basis
functions). The electron localization function (ELF) [16],
which we calculated in parallel with the persistent current, does
not provide any indications of multiple phases.

The ground state properties of quantum dots and rings [17]
such as the addition energy, the chemical potential, the
spontaneous spin magnetization and in particular the persistent
current have been addressed with CDFT in LDA [18, 19].
The harmonic confining potential was chosen to keep electrons
on a ring such that only the lowest transversal subband
was occupied. Wigner crystallization, however, was not
considered. Similar to the Mott–Hubbard insulator, the
description of the Wigner crystal requires more sophisticated
approximations than LDA for Exc. Self-interaction corrected
functionals, the LDA + U method, and exact-exchange
(OEP) functionals proved to be useful for strongly correlated
systems. The OEP method in particular (which has been
also generalized for time-dependent DFT) is gaining popularity
lately.

Most of the quantum ring systems discussed to date are
quasi-one-dimensional as it is commonly assumed that the
transverse electron motion is confined to the lowest subband.
Yet the one-dimensional fermion physics is distinctly different
from the common Fermi-liquid picture [20]. The low energy
properties are described by the Luttinger-liquid state (for
a review see e.g. [21]) where collective excitations replace
single-particle excitations of the Fermi liquid. In contrast
to two- and three-dimensional systems, it is not possible,
to connect adiabatically a non-interacting one-dimensional
system to the interacting one, since the ground states of
both systems are fundamentally different and even a weak
interaction drives the one-dimensional Fermi system into
a Luttinger-liquid state. There exist, however, a number
of analytically solvable models, such as the Bethe-ansatz
solution for the Hubbard model (for a review see [17]) or
the bosonization method. With the latter the one-dimensional
Wigner crystal has been studied [22]. The specific one-
dimensional physics is expected in systems like clean quasi-
one-dimensional wires, although it has been shown that
impurity scattering restores the Fermi-liquid behaviour [23]. In
view of a fundamental difference between the one-dimensional
interacting electrons and the Fermi liquid in higher dimensions,
it is clear that LDA-type approximations based on the Fermi-
liquid-type functionals are not adequate in the one-dimensional
case. The applicability of DFT itself is, however, not
invalidated, provided the appropriate exchange–correlation
functional is used. As such one can use, for example, the LDA
functional based on the Bethe-ansatz solution of a Hubbard
model [24]. Recently, it has been shown that the Bethe-
ansatz-LDA reproduces the key features (e.g. the dispersion
of the collective excitations) of the Luttinger liquid, while
it fails to describe the scaling of the Drude weight with the
system size [25]. This failure, however, is due to the specific
form of the LDA and it is unclear whether it affects other
functionals as well. As in this paper we do not consider the
specific one-dimensional fermion physics but rather focus on
the ability of DFT to detect the collective (that is, driven by
Wigner crystallization) electron localization, we adopt an OEP
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functional which is sufficient for this purpose. Our results
show that indeed with only macroscopic variables (current
and density) it is possible to observe the collective electron
localization entirely within the DFT framework, i.e. not
resorting to correlation functions.

As a simple model we consider a ring with a slightly
broken rotational symmetry. The symmetry breaking
is achieved by introducing a weak localized potential.
Calculating the persistent current as a function of the
interaction parameter rS, we find that it stays constant up
to the critical value r c

S ≈ 2.05 and decays exponentially
for larger values of rS. We interpret this behaviour as a
formation of a pinned Wigner crystal at r c

S. To verify this
interpretation we calculate the electron localization function
(ELF) [16]. The latter is derived from the local expansion
of the pair correlation function and gives a real space picture
of the electron localization. We find that below the transition
point the ELF corresponds to delocalized electrons whereas
it changes to an increasingly localized distribution above the
transition point. Taking the amplitude of the electron density
oscillations as the order parameter, we find that the system
undergoes a second-order phase transition at r c

S which is
reflected by the (rS − r c

S)
1/2 dependence of the order parameter

on rS. The second-order type of transition1 is a natural
consequence of the mean-field character of the theory.

The paper is organized as follows. In section 2 we
introduce the model of a one-dimensional quantum ring with
the Gaussian impurity potential. We briefly discuss the
OEP approximation [26, 27] which is used for the exchange
potential. We also introduce an electron localization function
(ELF) [16] which is used for a real space visualization
of the electron localization. In section 3 we describe the
computational method for solving the self-consistent Kohn–
Sham equations. In section 4 we present the results for the
persistent current as a function of rS. We consider impurity
potentials with different amplitude and width and show how
these parameters influence the current. The conclusions are
given in section 5.

2. The model

We study a system of N = 10 interacting spinless electrons
in a quasi-one-dimensional ring of circumference L = 2π R.
The ring geometry is accounted for via periodic boundary
conditions and x = ϕR denotes the coordinate along the
ring. Following Friesen and Bergersen [28], we average the
electron–electron interaction over the transverse direction. The
resulting interaction is well approximated by the function

V (x − x ′) = e2

4πεε0
min

(|x − x ′|−1, a−1
)
. (1)

We checked that the precise value of the transverse extension
of the wire a does not affect our results. A persistent current is

1 More rigorously, one can speak of a phase transition only in the
thermodynamic limit, which can be approached for very large systems. Our
model system of ten electrons is rather a Wigner ‘molecule’ than a Wigner
‘crystal’.

induced by a vector potential �A = (Ar , Aϕ) with Ar = 0 and
a tangential component

Aϕ = �

L
(2)

that provides a magnetic flux � through the ring. The vector
potential is chosen such that electrons move in a field-free
space.

Additionally, we introduce a repulsive Gaussian potential
centred at x0

Vimp(x) = V0 exp

(
− (x − x0)

2

σ 2

)
, (V0 > 0) (3)

which should pin the Wigner crystal.
We calculate the ground state current density for a given

value of magnetic flux and for a given strength and width of
the impurity potential using DFT. The self-consistent Kohn–
Sham [2] equations for this system are given by
[

1

2m∗
0

(−ih̄∂x − eAϕ

)2 + Vimp(x) + Vint(x)

]
ϕi(x)

= εiϕi(x) (4)

where index i labels the Kohn–Sham orbitals ϕi and the
eigenvalues εi . The electron–electron interaction is described
by an effective one-particle scalar potential Vint = VH + V x

OEP.
Here, VH is the Hartree potential and V x

OEP is the exchange
contribution. The latter is calculated in the Krieger–Li–Iafrate
(KLI) version [29, 30] of the OEP method [26, 27].

Commonly, the exchange–correlation energy of the
inhomogeneous system is locally approximated by the
exchange–correlation energy of a homogeneous system with
the respective density. This method is known as the local
density approximation (LDA). Since in LDA the exchange–
correlation energy of the homogeneous system is given
explicitly as a function of the density, the calculation of
the exchange–correlation potential as a derivative of the
exchange–correlation energy with respect to the density is
straightforward. In contrast, in the OEP method the exchange–
correlation energy functional is written explicitly in terms of
the Kohn–Sham orbitals. A common choice is the ‘exact-
exchange’ functional

EEXX
x = −1

2

e2

4πεε0

N∑

i, j

∫
dx

∫
dx ′ ϕ∗

i (x)ϕ j(x)ϕ∗
j (x ′)ϕi (x ′)

|x − x ′|
(5)

which has the form of the Fock energy but the wavefunctions
ϕi are the Kohn–Sham orbitals rather than the Hartree–
Fock orbitals. Unlike LDA, the direct calculation of the
derivative of Ex with respect to the density is not possible.
Minimization of the total energy functional with respect to
the density has to be performed via a chain rule which
leads to an integral equation for the exchange potential. In
this work we use the exact-exchange functional (5) within
the KLI approximation which allows us to transform the
OEP integral equation into a considerably simpler algebraic
equation. The KLI approximation can be considered as
a mean-field approximation to the OEP integral equation,
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neglecting all terms that vanish after averaging with the
density. Substantially simplifying calculations, the KLI
approximation retains important features of the exact xc
potential such as the derivative discontinuities and the correct
asymptotic behaviour [31].

Since DFT in the Kohn–Sham formulation is essentially
a mean-field theory, fluctuations are not accounted for in our
calculations. It is well known that thermal fluctuations are
particularly important in one dimension [20], however, we
expect that these fluctuations are effectively suppressed due to
the finite size of the ring. Quantum fluctuations are known to
be substantial in finite systems [32]. One expects that these
fluctuations will smoothen the transition which appears as a
sharp cusp in the mean-field DFT calculation. Yet, the two
phases away from the transition point—a delocalized electron
gas at small rS and a localized crystal at large rS—should not
be strongly affected.

Whether the ground state of a many electron system is
an electron gas-like one or a Wigner crystal state depends
on the ratio of the kinetic energy to the Coulomb energy.
In one dimension this ratio is simply proportional to the
electron density n, whereas in two and three dimensions it
is proportional to n

1/2 and n
1/3 , respectively. Hence for high

densities the kinetic energy dominates and the ground state
is electron gas-like whereas for low densities the Coulomb
repulsion favours the crystalline state.

Experimentally it is most straightforward to vary the
electron density to switch between weakly and strongly
interacting regimes. Yet the variation of the electron number
should alter the persistent current even in a non-interacting
system which conceals the interaction effects. As we use a
‘persistent current criterion’ to identify the Wigner transition
we prefer to exclude the aforementioned trivial single-particle
contribution and to retain only the influence of many-body
effects. It can be done using an alternative (though somewhat
artificial) way of controlling the ratio of kinetic and Coulomb
energy. Namely, let us consider the electron mass m∗ as a free
parameter. In one dimension, the parameter rS is commonly
defined as [33]

rS = 1

2N

L

a∗
B

, (6)

where L/N is the interelectron distance and

a∗
B = 4πεε0

h̄2

m∗
0e2

(7)

is the Bohr radius, defined with the effective mass m∗
0 and

dielectric constant ε of the host material. Considering the
effective mass as a free parameter we introduce its ratio to the
‘true’ effective electron mass m∗/m∗

0 in the definition of rS:

rS = 1

2N

L

a∗
B

m∗

m∗
0

. (8)

The persistent current density

j (x) = − ih̄

2m∗
0

N∑

i=1

[
ϕ∗

i (x)∂xϕi(x) − ϕi(x)∂xϕ
∗
i (x)

]

− h̄

m∗
0

2π

L

�

�0
n(x) (9)

should be calculated with the fixed ‘true’ effective electron
mass m∗

0. Here, �0 = h
e is the flux quantum and

n(x) =
N∑

i=1

ϕ∗
i (x)ϕi(x) (10)

is the density.
Also, the ratio of the kinetic energy to the impurity

potential must be kept constant when changing rS via changing
m∗. Otherwise the current density of a system of non-
interacting electrons would depend on rS. The impurity
potential strength V0 must be renormalized as

V0 → V ∗
0 = V0

m∗
0

m∗ . (11)

The potential renormalization (11) guarantees that the
artificial variation of the electron mass results in a dependence
of the persistent current on rS solely due to the electron–
electron interaction.

Equation (9) expresses the current density via the Kohn–
Sham orbitals within the framework of the ordinary density-
based DFT. It is not, however, fully justified since the DFT
Kohn–Sham equations by construction yield the exact ground
state density but not the current density. Strictly speaking,
one has to employ CDFT [34] which expresses the ground
state energy functional as a functional of the density and the
paramagnetic current density. The Kohn–Sham orbitals in
CDFT do give the exact current density of the interacting
system. However, a CDFT calculation of the physical current
proved redundant for our purposes, as the DFT Kohn–Sham
current serves just as well as a localization indicator.

In addition to the Kohn–Sham current, we use the
electron localization function (ELF) [16] to visualize the
electrons’ localization. In the original definition [16] the
ELF was invented for real wavefunctions only. Recently
it was generalized to the time-dependent case [35] where
complex wavefunctions have to be employed. This form of the
ELF is also suitable for the current-carrying static system we
consider. The idea behind the definition of the ELF is that the
localized electron produces a stronger repulsion of the other
like-spin electrons (due to the Pauli exclusion principle) than
the delocalized one. According to this picture, one calculates
the conditional pair probability to find a second electron (with
parallel spin) anywhere close to a reference electron. This
quantity is expanded in powers of the distance between the
electrons: the zeroth-and first-order coefficients vanish because
of the Pauli principle and the expansion around a minimum,
respectively. The second-order coefficient, normalized to the
respective quantity in the homogeneous electron gas, is given
by

χ(x) = τ (x) − 1
4

(n′(x))2

n(x)
− ( jp(x))2

n(x)

τ hom(x)
. (12)

In this expression τ (x) = h̄2

m∗
0

∑
i |∂xϕi (x)|2 is the kinetic

energy density of the Kohn–Sham system and τ hom(x) =
h̄2π2

6m∗
0

n3(x) is the respective quantity in a one-dimensional
homogeneous electron gas with density n(x). Physically, χ(x)
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is related to the curvature of the exchange hole [36]. In order
to restrict the values of the ELF to the interval [0, 1], χ(x) is
not plotted directly. Instead, one defines

η(x) = 1

1 + χ2(x)
(13)

which contains the same information as equation (12), but
shows a more pronounced structure [16]. For the interpretation
of the ELF, two values are of particular importance: its value of
one half corresponds to a homogeneous electron gas like state
whereas a value of one refers to a completely localized electron
at this point in space.

3. Computational method

For numerical solution of the Kohn–Sham equations (4) we use
a real space method. We expand the wavefunctions ϕi(x) using
a spline basis [37]

ϕi(x) =
∑

ν

a(ν)
i bν(x) (14)

with the complex coefficients a(ν)

i and the real basis functions

bν(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4

(
2 + x − xν

h

)3

: −2 <
x − xν

h
� −1

1 − 3

2

(
x − xν

h

)2

− 3

4

(
x − xν

h

)3

:

−1 <
x − xν

h
� 0

1 − 3

2

(
x − xν

h

)2

+ 3

4

(
x − xν

h

)3

:

0 <
x − xν

h
� 1

1

4

(
2 − x − xν

h

)3

: 1 <
x − xν

h
� 2

0 : else.
(15)

The spline nodes are xν and h is the distance between the two
adjacent nodes. The basis functions (15) are not orthogonal
which means that the overlap matrix

Sμ,ν =
∫

dx bμ(x)bν(x) (16)

is not diagonal. With this representation of the wavefunctions,
the Schrödinger equation reads

∑

ν

Hμ,νa(ν)
i = εi

∑

ν

Sμ,νa(ν)
i (17)

with the Hamiltonian matrix

Hμ,ν =
∫

dx bμ(x)Ĥbν(x). (18)

At the first step this generalized eigenvalue equation is
transformed into a standard eigenvalue equation. We use a
Cholesky decomposition [38] of the overlap matrix

Ŝ = L̂ L̂T (19)

into a lower triangular matrix L̂ and its transpose and write the
eigenvalue equation as

L̂−1 Ĥ (L̂T)−1 L̂T�ai = εi L̂T�ai . (20)

The matrix L̂−1 Ĥ(L̂T)−1 is diagonalized using the zheev-
routine from the LAPACK library [39] and the resulting
eigenvector L̂T�ai is transformed back to obtain the eigenvector
�ai of the original generalized eigenvalue problem.

The starting point for the iterative self-consistent
procedure is a system of non-interacting particles, i.e. a
system with VH = V x

OEP = 0. The resulting non-
interacting eigenfunctions are then used to construct the first
approximation for the Hartree and the exchange potential.
In the subsequent iterations, the Hartree and the exchange
potential are calculated from the eigenfunctions of the previous
step2. As a measure of the convergence we consider the
maximum difference between two Kohn–Sham eigenvalues in
the nth and (n − 1)th iteration step:

max
i

∣
∣
∣ε(n)

i − ε
(n−1)
i

∣
∣
∣ < 
. (21)

We found that this difference has to be extremely small
compared to the Kohn–Sham eigenvalues themselves which
are of the order of several tens of meV, namely 
 ≈
10−10 meV. The reason for this very small number are low
energy excitations which correspond to a charge displacement
over a large distance in the system. If the chosen 
 is
too large, one encounters a density range where the system
seems to be in a delocalized state whereas in fact it becomes
localized after the solution is converged. Generally, a very high
computational accuracy is required to distinguish correctly
between a localized and a delocalized state of the system.

4. Results

In this section we present the results of our calculations of the
persistent current in the one-dimensional quantum ring. For
the effective electron mass and the dielectric constant we have
chosen the GaAs values m∗

0 = 0.0665me and ε = 12.5. The
value of the magnetic field flux was chosen as � = 0.3�0.

For the Wigner crystal pinning we apply a narrow impurity
potential of width σ = 0.025L much smaller than the average
distance between electrons L

N = 0.1L. The persistent current
is calculated as a function of rS, the latter being altered by
varying m∗, according to equations (8) and (11). The current is
normalized to its value j0 for non-interacting electrons in the
presence of an impurity potential with unrenormalized strength
V0 = 10−3 meV. The results for various impurity potential
strengths are shown in figure 1. The dashed line j

j0
= 1 reflects

the current independence of rS for non-interacting electrons.
As seen in figure 1 for the smallest V0 = 10−3 meV, one

can clearly distinguish two different regions of rS. Below the
critical value of r c

S ≈ 2.05, the persistent current is independent

2 To ensure convergence the potential in the nth iteration step is in fact not
simply calculated from the density of the previous step. A fraction of the self-
consistent potential of the (n−1)th step is linearly mixed with it [40]. We used
the mixing factor α = 0.2.
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Figure 1. The persistent current as a function of rS for a Gaussian
impurity potential with a half maximum width of 2.5% of the ring
circumference. The current is normalized to its value j0 in a
non-interacting system and potential strength V0 = 10−3 meV. The
long-dashed line j/ j0 = 1 corresponds to the interaction-free system.

Figure 2. Logarithmic version of the plot in figure 1. The
exponential dependence of the persistent current on rS is clearly seen.

of rS. Its magnitude is the same as in the non-interacting
system which means that the interacting system is electron gas-
like. In contrast, for rS > r c

S, the persistent current drops
exponentially with increasing rS which is seen explicitly from
the linear dependence of log( j/j0) on rS shown in figure 2.
This signifies the formation of the Wigner crystal pinned by an
extremely small impurity potential. Hence the value r c

S = 2.05
can be interpreted as a critical rS of the Wigner transition in our
mean-field model.

This interpretation is supported by the ELF plot in figure 3.
For rS � 2.05 we find an ELF value of one half, corresponding
to completely delocalized electrons. This changes drastically
when rS exceeds r c

S. With increasing rS the electrons tend to
localize at discrete lattice sites. At rS ≈ 5 they arrange in
an ‘almost classical’ one-dimensional lattice. The complete
localization is achieved within a rather narrow interval of rS,
as exemplified in figure 3 by the ELF graphs for rS = 2.06
and 2.5. This reflects the exponential decay of the persistent
current, as shown in figure 1.

We believe, that within our numerical accuracy the solid
curve in figure 1 corresponds to the case of the ‘vanishing’

Figure 3. Electron localization function in the presence of a weak
(V0 = 0.001 meV) potential. Shown is the ELF for different values
of rS. Solid line: rS = 0.1, dashed line: rS = 2.06, dotted line:
rS = 2.5, dash–dotted line: rS = 5.0. An ELF value of one
corresponds to perfect localization whereas an ELF value of one half
means homogeneous electron gas-like delocalization.

external potential. Such a potential does not disturb the Wigner
transition, but provides the pinning. The particular potential
strength and width should then be unimportant. We tested
this by calculating the current density for several values of the
width of the pinning potential (all with V0 = 10−3 meV) and
found that the persistent current follows exactly the same rS-
dependence. However, the convergence is getting much harder
for wider potentials since the ‘smoother’ potentials are less
effective in pinning the Wigner crystal. For V0 values below
10−3 meV the convergence could not be reached. Yet using
a semiclassical approach [41] it can be shown analytically
that the current value j0 of a non-interacting system is indeed
recovered for Vimp = 0.

The critical r c
S = 2.05 we obtained in this work is

very close to the critical r c,discrete
S ≈ 2.0 found in variational

calculation for spinless electrons on a discrete one-dimensional
ring in the continuum limit [33]. It is also of the same order
as the values for r c

S found in a previous work [40] for a
different model using the ground state energy curvature [42] as
a localization criterion. In the presence of a disorder potential
with an amplitude 
V = 0.02 meV a Wigner transition has
been observed in the range 2.08 � r c

S � 5.04 depending on the
model for the electron–electron interaction.

The other three curves in figure 1 show the current of the
interacting system for V0 = 1.0, 5.0 and 10.0 meV. Although
at V0 = 1.0 meV there is still the range of rS where j = j0;
the sharp kink at rS = r c

S vanishes. The transition smoothing
becomes more pronounced in the cases V0 = 5.0 meV and
V0 = 10.0 meV where no distinct rS-independent current
regime is seen.

It should be emphasized that the dependence of the
normalized current on rS is solely due to the electron–
electron interaction. The smooth decrease of the current with
increasingly strong Coulomb interaction observed for stronger
impurity potentials (V0 = 5.0 and 10.0 meV) reflects a gradual
localization of the many-body state instead of a distinct phase
transition. This behaviour parallels the absence of a sharp
phase transition in an external potential field that lowers the
symmetry of the high-symmetry phase [20].
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Figure 4. Electron localization function in the presence of an
intermediate (V0 = 5.0 meV) narrow potential. Shown is the ELF for
different values of rS. Solid line: rS = 0.1, dashed line: rS = 1.5,
dotted line: rS = 2.0, dash–dotted line: rS = 2.5, long-dashed line:
rS = 5.0. For intermediate values of rS the electrons next to the
impurity are more localized. This localization increases gradually
with increasing rS. For large values of rS the ELF is the same as
found in the case of the weak potential (see figure 3).

An estimate of the Coulomb energy of two electrons at a
distance d = L

N = 20.0 nm

U = e2

4πεε0

1

d
≈ 5.75 meV (22)

shows that it is indeed of the order of the pinning potential
which smoothes out the phase transition and induces a gradual
localization. For V0 � 1 meV and at intermediate values
of rS it can be seen directly from the ELF plots (figure 4)
that the localization is more pronounced next to the pinning
potential. This indicates that a gradual localization seen in
figure 1 is driven by the interplay between the long-range
Coulomb repulsion and the interaction with the short-range
impurity potential, both being of the same order.

The sharp transition we found for a ‘vanishing’ impurity
potential (solid line in figure 1) is a second-order phase
transition from an electron liquid state to the Wigner crystal
state. This can be verified by plotting the rS-dependence of the
order parameter δ which shows a behaviour δ ∼ (rS − r c

S)
1/2

at rS > r c
S, i.e. in the low-symmetry phase [20]. Indeed, taking

the amplitude of the density oscillations δn normalized to the
average density n = N/L as the order parameter δ = δn/n, we
obtain an exact square root dependence, as shown in figure 5.
The second-order type of the transition we observe in our
calculations is quite natural for the mean-field-type DFT-OEP
approach.

From the exponential dependence of the current on rS

(figure 1) we can deduce the relation between the persistent
current density and the order parameter

j (δ) = j0 exp(−αδ2) (23)

where the numerical factor α = 3.3.

5. Conclusions

In this paper we have investigated numerically the influence of
the electron–electron interaction on the ground state of a one-
dimensional electron gas confined in a ring geometry using

Figure 5. Amplitude of the density oscillations as a function of rS for
a weak impurity potential (V0 = 0.001 meV). The solid black curve
shows the calculated data, the dashed red curve is a square root
(rS − r c

S)
1/2 behaviour.

the exact-exchange DFT-OEP model. To break the rotational
invariance of the ring we introduce a weak ‘impurity’ potential.
This potential does not affect the delocalized electron liquid
phase, but provides a pinning of the crystalline Wigner phase.
We employ a persistent current in the ring as a measure of
the Wigner crystal pinning. For a sufficiently weak impurity
potential we found that for rS < r c

S the current density of the
interacting system is exactly the same as the current density
of a non-interacting electron gas. For rS > r c

S the current
of the interacting system decays exponentially with increasing
rS while the current of a non-interacting system remains
constant. This behaviour clearly shows that in the exact-
exchange OEP model electron localization via the formation
of a Wigner crystal in a one-dimensional system can be
achieved. This interpretation is confirmed by the ELF plots
which reveal the delocalized electron distribution below the
critical r c

S and a localized one above r c
S. At rS = r c

S the system
undergoes a second-order phase transition from an electron
liquid to a Wigner crystal. This is evident from the square
root dependence of the amplitude of the density oscillations
(taken as the order parameter) on rS above the critical value.
Experimentally, this transition should be observable as a
decrease of the ring’s magnetization when the electron density
is lowered. However, in a real experiment this transition will
be superposed with the interaction-independent variation of the
current density due to the variation of the particle number,
and quantum fluctuations are expected to lead to a smooth
transition. The critical value r c

S = 2.05 we find for the
Wigner transition is consistent with the density range in which
Glazman et al [43] expected the existence of a stable one-
dimensional Wigner crystal.
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